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Abstract

We investigate the origin of the form invariance of Maxwell’s Equa-
tions and see how this relates to the theory of transformation optics, in
which a particular geometry is related to the equivalent electromagnetic
properties required in Euclidian space to create the geometry. This idea
is used to reformulate transformation optics in the more natural language
of di↵erential geometry and to derive the electromagnetic properties asso-
ciated with arbitrary transformations using these techniques. The theory
of transformation optics is then generalised to non-linear electromagnetic
media and to a spacetime formulation.

From Controlling Electromagnetic Fields, J.B. Pendry et al. [1]
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1 Introduction

It is well known that Maxwell’s Equations are coordinate independent, as any physical
equations should be, but what is often less appreciated is that they are in fact form
invariant. This means that not only do the equations hold in any coordinate system,
but they also take on the same form, so long as the variables are appropriately
transformed.

Only a decade ago, in 2006, was it recognised that this form invariance implies
that active coordinate transformations can instead be interpreted as a transformation
of the electromagnetic properties of the space [1]. This resulted in the foundation of
the field of transformation optics [2].

The best known application of this is to create the ultimate illusion: invisibility.
If a transformation is chosen such that all electromagnetic fields are distorted around
an object with the boundary fields of the region left una↵ected, then any external ob-
server only able to measure the boundary fields will not be able to detect the presence
of the object, rendering it invisible. The electromagnetic properties corresponding
to this transformation can then be calculated, and a material fashioned with these
properties would e↵ectively form an invisibility cloak.

This may seem farfetched, but with the impressive rate of developments in the
field of metamaterials since the turn of the century, this concept is of more than just
academic interest.

Metamaterials make possible novel electromagnetic properties, such as a negative
index of refraction, through intricate sub-wavelength structures which appear as an
e↵ectively homogeneous medium to incident radiation [3]. The development of these
materials has been such that the construction of a material in which the permittivity
and permeability are varied independently and arbitrarily throughout the medium
is now a feasible reality, allowing the electromagnetic fields to be controlled through
the medium like a fluid.

In fact, in November 2006, less than six months after the first paper was published
recognising the theoretical possibility for invisibility using metamaterials, a metama-
terial cloak was constructed which could conceal a cylindrical object from microwaves
in a particular plane [4]. More recently, in September 2015, an ultra thin invisibility
skin cloak, just 80nm thick, was fabricated which could be wrapped around an arbi-
trarily shaped 3D object to cloak it from both wide-field imaging and phase sensitive
detection methods, by reflecting any incident light as if the object was a flat mirror
[5].

Therefore the theoretical development of the theory of transformation optics is
very relevant, with any theoretical possibilities likely to soon be realised by develop-
ments in metamaterials.
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2 Project Overview

Current literature on transformation optics mostly uses tensor analysis to calculate
the electromagnetic properties required to achieve a given coordinate transformation,
often requiring unwieldy calculations and giving little geometrical insight [6, 7, 8].
Therefore, one of the main goals of this project will be to reformulate the theory of
transformation optics in terms of modern di↵erential geometry, in order to gain a
better geometrical understanding of the transformations, as well as to simplify and
generalise the current theory.

One motive for this comes from the naturalness with which modern di↵erential
geometry, in particular di↵erential forms, can be applied to electromagnetism [9, 10].
Another comes from the well recognised equivalence between transformation optics
and general relativity [2, 11]. In general relativity, spacetime geometries are induced
by mass distributions, causing light to follow a curved geodesic path in regions where
the metric depends on position. Similarly in transformation optics, spatial geometries
are induced by electromagnetic properties, causing light to follow a curved geodesic
path in regions where the refractive index depends on position. Since di↵erential
geometry is the natural language of general relativity and lends itself very readily
to electromagnetism and coordinate transformations, there is a strong motivation to
apply these techniques to transformation optics.

In addition, when using tensor analysis, the representation of the constitutive re-
lations in terms of permittivity and permeability tensors implicitly requires linearity,
which may not hold in all materials, or for stronger fields. Recent work on metama-
terials has begun to consider the inclusion of non-linear components to enhance their
non-linear response and give, for example, an intensity dependent electromagnetic
response [12, 13]. Therefore, another aim of this work is to generalise the current
theory of transformation optics to allow for non-linear constitutive relations. This
will allow the theory of transformation optics to be applied to more realistic non-linear
materials including memory dependent electromagnetic continua.

We begin, in section 3, by considering transformations of the integral forms of
Maxwell’s Equations. In this formulation the physical interpretation of Maxwell’s
Equations is explicit, so we aim to get a better understanding of the origin of the
form invariance of the equations.

In section 4, we then reformulate Maxwell’s Equations in terms of di↵erential
forms and consider how these equations transform. We will be able to use the ba-
sic results from the integral transformations to verify our more general di↵erential
geometry equations.

Finally in section 5, we will generalise to a di↵erential geometry spacetime for-
mulation of Maxwell’s Equations and transformation optics, and discover the most
general non-linear constitutive relation that is consistent with Lorentz invariance.
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3 Transformation of the Integral Formulation of
Maxwell’s Equations

3.1 Transformations of Integral Equations

In the literature, Maxwell’s Equations are usually transformed in di↵erential form, us-
ing either vector or tensor calculus [6, 7, 8]. Here we transform the integral equations,
in the hope of gaining a better insight into the origin of the form invariance.

Consider some smooth bounded domain M ✓ Rn with n > 2 and boundary @M .
Let ⇠ : fM ! M be a di↵eomorphism (a smooth mapping with a smooth inverse)

which defines the related domain fM [14].

fM M

⇠
x y = ⇠(x)

Figure 1.

First consider the transformation of the basis vectors.

x

�x3

�x2

�x1

⇠
⇠(x)

F
⇠
· �x3

F
⇠
· �x2

F
⇠
· �x1Figure 2.

x 7! ⇠(x) := y (1)

x+ �x 7! ⇠(x+ �x)

) [x+ �x]i 7! ⇠
i
(x) +

@⇠i
@xj

(�x)j

) �x 7! F
⇠
· �x where F

⇠
:= (r⇠)T (2)

The transformation of a line integral under the di↵eomorphism ⇠ is now trivial.
Z

L

f
l
(y) · dl =

Z

L̃

f
l
[⇠(x)] · F

⇠
· dl̃ =

Z

L̃

f̃
l
(x) · dl̃ (3)

where
f̃
l
(x) := F T

⇠
· f

l
[⇠(x)].
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Surface and volume integrals transform similarly, as shown in appendix A.
Z

@M

f
S
(y) · dS =

Z

@fM

ef
S
(x) · deS (4)

Z

M

fV (y) · dV =

Z

fM

efV (x) · deV (5)

where

ef
S
(x) = J⇠(x) F

�1
⇠

· f
S
[⇠(x)]

efV (x) = J⇠(x) fV [⇠(x)]

J⇠(x) := detF
⇠
.

3.2 Transformation of Maxwell’s Equations

Now let us consider the integral form of Maxwell’s Equations, defined on some domain
M .

I

S

D · dS =

Z

V

⇢ dV (6)
I

S

B · dS = 0 (7)
I

L

E · dl = � @

@t

Z

S

B · dS (8)
I

L

H · dl =
Z

S

J · dS +
@

@t

Z

S

D · dS (9)

Applying the transformation rules (3)-(5), we obtain Maxwell’s Equations defined

on the related domain fM .

I

eS

eD · deS =

Z

eV
e⇢ deV (10)

I

eS

eB · deS = 0 (11)
I

eL

eE · del = � @

@t

Z

eS

eB · deS (12)
I

eL

eH · del =
Z

eS

eJ · deS +
@

@t

Z

eS

eD · deS (13)
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The new fields are given by

eD(x) = J⇠ F
�1
⇠

·D[⇠(x)] (14)

eE(x) = F T

⇠
· E[⇠(x)] (15)

eB(x) = J⇠ F
�1
⇠

· B[⇠(x)] (16)

eH(x) = F T

⇠
·H[⇠(x)] (17)

e⇢(x) = J⇠ ⇢[⇠(x)] (18)

eJ(x) = J⇠ E
�1 · J [⇠(x)]. (19)

We see that the form of Maxwell’s Equations is unchanged. This arises because
of the integral interpretation of the equations. The electric field E and the magnetic
field H are interpreted as quantities per unit length which must be transformed
as line integral variables, while the displacement field D and the magnetic flux B
are interpreted as quantities per unit area (fluxes) which must be transformed as
surface integral variables. These interpretations lead to consistent transformations
of the fields. Also, we have required that the E and D fields, and the H and B
fields, are independently variable, requiring arbitrary electromagnetic properties in
the considered domain. It is these features that have allowed Maxwell’s equations to
be written in a form invariant way.

By choosing a linear constitutive relation on our original domain M of the form

D(x) = ✏ · E(x), (20)

we obtain
eD(x) = J⇠ F

�1
⇠

· ✏ · F�T

⇠
· eE(x). (21)

So we have
e✏ = J⇠ F

�1
⇠

· ✏ · F�T

⇠
. (22)

And equivalently
eµ = J⇠ F

�1
⇠

· µ · F�T

⇠
. (23)

Note that e✏ and eµ are symmetric if ✏ and µ are symmetric. This is expected

since energy conservation requires the permittivity and permeability to be Hermitian,
and therefore symmetric if the material is lossless. Also the transformed medium is
impedance matched, e✏ = eµ, if the reference medium is impedance matched, ✏ = µ,

thus preventing reflections from the new medium [15]. These are in fact general
properties of transformation optics.

The form invariance of Maxwell’s Equations has interesting consequences for the
inverse problem of determining the fields inside a domain given complete measure-
ments of the surface fields [16]. Defining an arbitrary di↵eomorphism ⇠ from M onto
itself subject to the condition that ⇠(x) = x for x 2 @M , new fields eE, eH, eD, eB can be

obtained which will satisfy Maxwell’s Equations in the new domain fM and which will
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satisfy the same boundary measurements on @M . As there are an infinite number of
di↵eomorphisms of this form, there will be an infinite degeneracy of possible fields
inside the domain which satisfy the same boundary measurements [14]. Since bound-
ary measurements correspond to what is observed, for example via electromagnetic
radiation, this degeneracy leads to the possibility of perfect electromagnetic cloaking
through the application of a carefully chosen di↵eomorphism.

It is also worth noting here that if we were restricted to a homogeneous isotropic
medium, where the permittivity and permeability are scalars, Maxwell’s Equations
would not be form invariant as it would be impossible to consistently redefine the fields
to recover the original form of the equations. Therefore there would only be a single
set of field solutions in the domain. This is equivalent to the well known uniqueness
theorems of electrostatics and magnetostatics, which show that an isotropic material
with given boundary conditions has a unique interior field solution.

3.3 Non-Linear Electromagnetic Media

In the above we chose a linear constitutive equation in the original domain and so
found a linear constitutive relation in the transformed domain. However, there are
many materials for which the constitute equations are non-linear, and even linear
materials often become non-linear for strong fields. Now let us consider how trans-
formation optics applies in these materials.

In general the electromagnetic response of a material is defined by

D =
@U

@E
:= ✏(E), (24)

B =
@U

@H
:= µ(H), (25)

which in turn defines the generalised permittivity and permeability operators, ✏ and
µ.

Similarly in another domain fM related by a di↵eomorphism ⇠ we have

eD = e✏( eE), (26)

eB = eµ( eH). (27)

From the field transformations under the di↵eomorphism ⇠ derived earlier we have

eD(x) = J⇠ F
�1
⇠

·D(⇠(x)) := ⇠DD, (28)

eE(x) = F T

⇠
· E(⇠(x)) := ⇠EE, (29)

eB(x) = J⇠ F
�1
⇠

· B(⇠(x)) := ⇠BB, (30)

eH(x) = F T

⇠
·H(⇠(x)) := ⇠HH. (31)

Therefore the fields in the two domains must be related by the following commu-
tative diagrams.
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E D

eE eD

✏

⇠E ⇠D

e✏

H B

eH eB

µ

⇠H ⇠B

eµ
Figure 3.

We can now derive the relations between the generalised electromagnetic response
functions simply by requiring commutativity of the diagrams. For the permittivity
response operator we have

e✏ � ⇠E = ⇠D � ✏

=) e✏ [ eE(x)] = J⇠ F
�1
⇠

· ✏ [F�T

⇠
· eE(x)]. (32)

Equivalently for the permeability response operator,

eµ � ⇠H = ⇠B � µ

=) eµ [ eE(x)] = J⇠ F
�1
⇠

· µ [F�T

⇠
· eH(x)]. (33)

These equations allow the generalised permittivity and permeability operators re-
quired to achieve a given di↵eomorphism of the fields to be calculated in terms of the
original operators in the domain in which they are known. Importantly, this demon-
strates that Maxwell’s Equations can still be satisfied under any di↵eomorphism in
a non-linear material, and that the di↵eomorphism preserves the nature of the non-
linearity (the non-linear functional dependence on the E and H fields at every point
is unchanged by the transformation). This opens up the possibility of electromag-
netic cloaking using non-linear materials, the implications of which are discussed in
section 7.

Note that in the case where the operators are linear these reduce to the above
equations found by directly manipulating the fields in the linear case.

3.4 Hysteretic Electromagnetic Media

Now that we have derived general non linear expressions for the transformations of
the permittivity and permeability operators, it is only a small step to generalise to
memory dependent (hysteretic) electromagnetic materials. These materials do not
just depend on the instantaneous applied fields but on the entire time dependent
functions E(t) and H(t).

D(x, t) = ✏ [x, E(x, ⌧)] (34)

B(x, t) = µ [x, H(x, ⌧)] (35)

9



We require only that this time dependence satisfies causality and time transla-
tional symmetry [17]. Causality requires that the induced fields can only depend on
the applied fields at earlier times, ⌧ < t. Time translational symmetry requires that

D(x, t+ t0) = ✏ [x,E(x, ⌧ + t0)]. (36)

The most general time dependence that satisfies these properties is ⌧ = t� t0 for
t0 2 [0,1]. Now let us introduce the notation [17]

Et(t0) := E(t� t0), (37)

H t(t0) := H(t� t0). (38)

where t0 2 [0,1]. Therefore we can write

D(x, t) = ✏ [x, Et(t0)], (39)

B(x, t) = µ [x, H t(t0)]. (40)

Now since the di↵eomorphisms so far considered only a↵ect the spatial variables,
this additional temporal dependence of the permittivity and permeability operators
does not a↵ect the transformation rules derived for them previously. Therefore we can
straight away write down the transformed permittivity and permeability operators
for a non-linear hysteretic material in a transformed geometric domain.

e✏ [ eE
t
(x, t0)] = J⇠ F

�1
⇠

· ✏ [F�T

⇠
· eE

t
(x, t0)] (41)

eµ [ eH
t
(x, t0)] = J⇠ F

�1
⇠

· µ [F�T

⇠
· eH

t
(x, t0)] (42)

As before, these equations show the existence of an infinite degeneracy of electro-
magnetic fields which solve Maxwell’s equations inside a general non-linear hysteretic
material and which satisfy the same boundary conditions. This leads to the theoretic
possibility of perfect invisibility even inside a non-linear hysteretic material.

If the hysteretic response of the material is linear, we can simply sum the contri-
butions of the applied fields at time t0 using the Boltzmann superposition principle.

D(t) =

Z
✏(t, t0) · E(t0) dt0 (43)

B(t) =

Z
µ(t, t0) ·H(t0) dt0 (44)

Causality requires t0 < t, while time-translational symmetry requires
✏(t, t0) = ✏(t� t0), µ(t, t0) = µ(t� t0), so we have

D(t) =

Z t

�1
✏(t� t0) · E(t0) dt0 := ✏[Et(t0)], (45)

B(t) =

Z t

�1
µ(t� t0) ·H(t0) dt0 := µ[H t(t0)]. (46)

Therefore in the case of a linear hysteretic material we can interpret the permit-
tivity and permeability operators as the integral operators defined above, and the
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corresponding transformed operators under a di↵eomorphism of the fields are given
by

eD(x, t) = e✏[ eE
t
(x, t0)] = J⇠ F

�1
⇠

·
Z t

�1
✏ (t� t0) · F�T

⇠
· eE(x, t0) dt0, (47)

eB(x, t) = eµ [ eH
t
(x, t0)] = J⇠ F

�1
⇠

·
Z t

�1
µ (t� t0) · F�T

⇠
· eH(x, t0) dt0. (48)

In the non-hysteretic case we simply have

✏(t� t0) = �(t� t0)✏,

µ(t� t0) = �(t� t0)µ

and the equations reduce to the instantaneous linear response equations derived
previously.

4 Di↵erential Geometry Formulation and
Transformation of Maxwell’s Equations

4.1 Formulation of Maxwell’s Equations in terms of
Di↵erential Forms

In considering the transformation of the integral formulation of Maxwell’s Equations,
it became clear that the form invariance of the equations followed from the interpre-
tation of the E and H fields as physical quantities per unit length which must be
integrated over a one-dimensional path, and the D and B fields as physical quan-
tities per unit area which must be integrated over a two-dimensional surface. This
idea leads to a more fundamental representation of Maxwell’s Equations which is
independent of coordinate system.

This representation involves the use of di↵erential forms. A brief overview of
di↵erential forms is given in appendix B, but there are many good texts containing
a more extensive coverage [10, 18, 19, 20]. Here we begin by defining the forms

E = E1 dx1 + E2 dx2 + E3 dx3, (49)

H = H1 dx1 +H2 dx2 +H3 dx3, (50)

D = D1 dx2 ^ dx3 +D2 dx3 ^ dx1 +D3 dx1 ^ dx2, (51)

B = B1 dx2 ^ dx3 +B2 dx3 ^ dx1 +B3 dx1 ^ dx2, (52)

J = J1 dx2 ^ dx3 + J2 dx3 ^ dx1 + J3 dx1 ^ dx2, (53)

⇢ = % dx1 ^ dx2 ^ dx3, (54)

where x1, x2, x3 represent the coordinates of an n = 3 dimensional space, but can be
any kind of generalised local curvilinear coordinates defined on a manifold M . In this
formulation the electric field E is represented as a 1-form since it can be integrated
over a one-dimensional path to give a physically meaningful quantity, specifically
the work done per unit charge. Similarly the current density J is a 2-form because
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integrating it over a surface gives the current, while the charge density ⇢ is a 3-form
because integrating it over a volume gives the charge enclosed.

These definitions allow Maxwell’s Equations to be written

dD = ⇢, (55)

dB = 0, (56)

dE = �Ḃ, (57)

dH = J + Ḋ. (58)

Here d is the exterior derivative and subsumes the gradient, curl and divergence
operations into one operator which is independent of the coordinate system in which
it is evaluated (see section 4.2). A brief overview of the exterior derivative and the
equivalence of these equations with the traditional vector calculus formulation of
Maxwell’s Equations is given in appendix B.

The linear constitutive equations in this formulation are given by [9]

D = ?(✏E), (59)

B = ?(µH), (60)

where ? is the Hodge star operator and ✏ and µ are linear operators. The Hodge
star is e↵ectively a unique mapping from a k-form to an n � k form, or in this case
a 1-form to a 2-form, and is defined in appendix B. It is worth noting that in this
formulation, while Maxwell’s Equations themselves do not depend upon the nature
of the manifold or the coordinate charts used, it is through the Hodge star that the
geometry of the space enters the equations.

4.2 Pullback of Maxwell’s Equations

We now consider how this form of Maxwell’s Equations transforms under a di↵eo-
morphism to a di↵erent geometrical domain.

To transform a di↵erential form we must use the pullback operation, which maps
k-forms on a manifold M to k-forms on a related manifold fM .

Crucially this operation commutes with the exterior derivative, such that if ! is
a k-form on M , we have

⇠⇤d! = d(⇠⇤!). (61)

This vital relation is proved in appendix C and demonstrates the earlier statement
that the exterior derivative of a di↵erential form is independent of the coordinate
system in which it is computed [10].

Therefore, applying the pullback to Maxwell’s Equations defined on M given
above, and using the commutativity of the pullback with the exterior derivative we
obtain

d eD = e⇢, (62)

d eB = 0, (63)

d eE = � ėB, (64)

d eH = eJ + ėD, (65)
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where we have defined

eE(x) = ⇠⇤E[⇠(x)], (66)

eH(x) = ⇠⇤H[⇠(x)], (67)

eD(x) = ⇠⇤D[⇠(x)], (68)

eB(x) = ⇠⇤B[⇠(x)], (69)

eJ(x) = ⇠⇤J [⇠(x)], (70)

e⇢(x) = ⇠⇤⇢[⇠(x)]. (71)

These equations represent the di↵erential geometry equivalents of equations (14)-
(19), which can be demonstrated by applying the definition of the pullback (given in
appendix C). The form invariance of Maxwell’s equations is now explicit, and follows
simply from the commutativity of the exterior derivative with the pullback operation,
giving a much better geometrical insight into its origin.

4.3 Pullback of the Linear Constitutive Equations

Consider again the linear constitutive equations:

D = ?(✏E), (72)

B = ?(µH) (73)

where ✏ and µ are linear operators.
To pullback these equations we need to find the appropriate transformation of the

Hodge star operator. We find that the pullback of the Hodge star of a k-form � is
given by

⇠⇤(?�) = ?[J⇠(
^k

T )⇠⇤�], (74)

where we have defined

T = eg(⇠⇤g)�1,

J⇠ = |T |� 1
2 .

The derivation of this result is given in appendix D.
Now let us apply this to the constitutive relation (72).

eD = ⇠⇤D

= ⇠⇤[?(✏E)]

= ?[J⇠ (
^1

T )⇠⇤(✏E)]

= ?[J⇠ T (⇠
⇤✏)(⇠⇤E)]

= ?[J⇠ T (⇠
⇤✏) eE]

⌘ ?(e✏ eE)

=) e✏ = J⇠ eg(⇠⇤g)�1(⇠⇤✏) (75)
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Now we need to find the pullback of the metric tensor g and the linear operator
✏. We find

(⇠⇤g)x = Fx
⇤g⇠(x)Fx (76)

and
(⇠⇤✏)x = Fx

⇤✏⇠(x)Fx
⇤�1 (77)

where we have defined the deformation gradient

Fx := T ⇠|x : Tx
fM ! T⇠(x)M (78)

and its dual
Fx

⇤ : T⇠(x)
⇤M ! Tx

⇤fM. (79)

These results are derived in appendix E.
Using these results we obtain

e✏ = J⇠ egx (⇠⇤g)�1
x (⇠⇤✏)

= J⇠ egx (F ⇤
x g⇠(x) Fx)

�1 (F ⇤
x ✏⇠(x) F

⇤�1
x )

= J⇠ egx F�1
x g�1

⇠(x) F
⇤�1
x F ⇤

x ✏⇠(x) F
⇤�1
x

= J⇠ egx F�1
x (g�1

⇠(x) ✏⇠(x) F
⇤�1
x )

And equivalently for eB = ?(eµ eH). So we have

e✏ = J⇠ egx F�1
x (g�1

⇠(x) ✏⇠(x) F
⇤�1
x ), (80)

eµ = J⇠ egx F�1
x (g�1

⇠(x) µ⇠(x) F
⇤�1
x ). (81)

These results are the di↵erential geometry equivalent to the earlier equations

e✏ = J⇠ egx F�1
x (g�1

⇠(x) ✏⇠(x) F
⇤�1
x ) , J⇠ F

�1
⇠

· ✏
⇠(x)

· F�T

⇠
= e✏,

eµ = J⇠ egx F�1
x (g�1

⇠(x) µ⇠(x) F
⇤�1
x ) , J⇠ F

�1
⇠

· µ
⇠(x)

· F�T

⇠
= eµ,

which clearly agree in the case of a Euclidian metric in Cartesian coordinates.
However, unlike equations (22)-(23), these equations can now be directly applied

in any coordinate system or in any spatial geometry. The metric factors now auto-
matically take care of any coordinate transformations from Cartestian coordinates in
Euclidian space.
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4.4 Di↵erential Geometry Formulation of Non-Linear
Constitutive Equations

In vector calculus the defining electric constitutive relation is given by

D =
@U

@E
. (82)

Now consider how to formulate this in terms of di↵erential forms defined on a
manifold. Here we will simply justify the form of the general constitutive relation by
appealing to reason; we will prove this relation more formally in section 5.5 once a
relativistic formulation of the electromagnetic field has been established.

Since di↵erential forms are defined on the cotangent bundle, let us define U as
a scalar function of the 1-forms E and H defined on the cotangent bundle of some
manifold M ,

U 2 C1(T ⇤M,T ⇤M). (83)

Since the constitutive equation must be local, we want to vary U with respect to
E with the position on the manifold fixed. Therefore we need to vary U along the
vertical fibre bundle defined to be in some sense ’perpendicular’ to the manifold at
each point. To do this we need to use the partial fibre derivative FEU(E,H) [18],
defined by

hFEU(E,H), �Ei = d

ds
U(E + s �E,H)

����
s=0

(84)

where U 2 C1(T ⇤M,T ⇤M)

E, �E,H 2 (T ⇤
xM).

FEU(E,H) is therefore a vector on the tangent bundle

FEU 2 TxM. (85)

This can be mapped to a di↵erential form (a 1-form) simply by ’flattening’ the
vector to the cotangent bundle (applying the lowering metric),

FEU
[ ⌘ [gµ⌫ FEU

⌫ ] 2 T ⇤
xM. (86)

This is now a 1-form, but D is a 2-form. Therefore to complete the constitutive
relation, we must apply the Hodge star operator to give

D = ?[FEU(E,H)[]. (87)

This is the general non-linear constitutive relation in the di↵erential geometry
formulation.

And of course equivalently, the magnetic constitutive relation

B =
@U

@H
(88)

becomes
B = ?[FHU(E,H)[]. (89)
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4.5 Pullback of the Non-Linear Constitutive Equations

To relate these constitutive equations to the electromagnetic properties of a medium
by applying the pullback, we must first find the pullback of the fibre derivative. This
is derived in appendix F, and gives

⇠⇤FU(E[⇠(x)]) = F
⇥
(⇠⇤U)( eE(x))

⇤
. (90)

Together with the previous results for the pullback of the Hodge star and the
metric, we are now able to pullback the general non-linear constitutive relation. For
simplicity we write U(E,H) = U(E) here, but the results are identical for a general
electromagnetic internal energy function U(E,H) so long as we take the appropriate
partial fibre derivatives of section 4.4.

eD(x) = ⇠⇤D[⇠(x)]

= ⇠⇤[? FU(E[⇠(x)])[]

= ?[J⇠ eg(⇠⇤g)�1 ⇠⇤{FU(E[⇠(x)])[}]
= ?[J⇠ eg(⇠⇤g)�1(⇠⇤g) ⇠⇤FU(E[⇠(x)])]

= ?[J⇠ eg ⇠⇤FU(E[⇠(x)])]

= ?[J⇠ eg F{(⇠⇤U)( eE(x))}]
= ?[eg FeU( eE)]

= ?[FeU( eE)[]

where we have defined

eU = (⌧ ⇤J⇠)(⇠
⇤U) = (J⇠ � ⌧)(U � F ⇤�1) (91)

where ⌧ is just the projection ⌧ : T ⇤fM ! fM .
Therefore given the internal energy functional for a non-linear material U(E), we

are able to calculate the related internal energy functional eU(E) which will cause the
fields to transform under the di↵eomorphism ⇠. As before we see that the nature
of the non-linearity of the energy functional of the material is unchanged by the
transformation.

Now using the above, we write the expression for eD as

eD = ?[J⇠ egx F�1
x FU(F ⇤�1

⇠(x)
eE)]. (92)

And defining

D = ?[FU(E)[] := ?[✏(E)] (93)

eD = ?[FeU( eE)[] := ?[✏̃( eE)] (94)

where ✏ and ✏̃ are non general non-linear operators, we obtain

✏̃[ eE] = J⇠ egx F�1
x g�1

⇠(x) ✏[F
⇤�1
⇠(x)

eE], (95)

which is clearly equivalent to the earlier tensorial result (32) for a generalised non-
linear electromagnetic response in the case of a Euclidian metric in Cartesian coor-
dinates. Again the results are all equivalent for the permeability operator.

µ̃[ eH] = J⇠ egx F�1
x g�1

⇠(x) µ[F
⇤�1
⇠(x)

eH], (96)
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4.6 Example of a Spherical Cloak using the Di↵erential
Geometry Formulation

As a pedagogical example often considered in the transformation optics literature
[1, 6], consider the case of a spherical invisibility cloak. We begin by defining the
di↵eomorphism

⇠ : fM ! M, (97)

where M is free space labelled by spherical polar coordinates r, ✓,� and fM is the
distorted space labelled by er, e✓, e�, which are related via [1]

er = r2�r1
r2

r + r1

e✓ = ✓
e� = �

9
>>=

>>;

r = r2
r2�r1

(er + r1)

✓ = e✓
� = e�.

This di↵eomorphism has been chosen such that all fields in the region r < r1 in
free space are compressed into the region r1 < r < r2 in the distorted space. The
spatial distortion can then be represented as a transformation of the electromagnetic
properties of Euclidian space in the region r1 < r < r2 using the theory of trans-
formation optics. This means that for an object placed in the region r < r1, the
above spatial distortion e↵ectively created by an electromagnetic cloak existing in
the region r1 < r < r2 will render the object invisible to electromagnetic radiation.
In addition, since the di↵eomorphism has been chosen such that r = er when r = r2,
the transformation is continuous across the edge of the electromagnetic cloak and
therefore will also render the cloak invisible.

From the di↵erential geometry formulation of Maxwell’s Equations, it was found
that the transformation of the permittivity tensor (assuming linearity) is given by

e✏ = J⇠ eg F�1
x g�1

⇠(x)✏⇠(x)F
⇤�1
x . (98)

Taking M to be free space, we have ✏ = ✏0 everywhere on M .
In spherical polar coordinates the line element on M is given by

ds2 = dr2 + r2d✓2 + r2 sin2 ✓ d�2 (99)

=) g =

0

@
1 0 0
0 r2 0
0 0 r2 sin2 ✓

1

A

=) g�1 =

0

@
1 0 0
0 1

r2
0

0 0 1
r2 sin2 ✓

1

A

) g�1
⇠(x) =

0

BB@

1 0 0

0
h

r2�r1
r2(er�r1)

i2
0

0 0
h

r2�r1
r2(er�r1) sin ✓

i2

1

CCA .
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And similarly the line element on fM in spherical polar coordinates is given by

ds2 = der2 + er2de✓2 + er2 sin2 e✓ de�2 (100)

=) eg =

0

@
1 0 0
0 er2 0

0 0 er2 sin2 e✓

1

A .

Since the deformation gradient is linear and expressed in a matrix representation,
from the definition of the dual operator, its dual is equal to its transpose. This gives

Fx = F ⇤
x =

0

@
r2

r2�r1
0 0

0 1 0
0 0 1

1

A

=) F�1
x = F ⇤�1

x =

0

@
r2�r1
r2

0 0
0 1 0
0 0 1

1

A .

We also have

J⇠ = (detT )�
1
2

= det(eg(⇠⇤g)�1)�
1
2

= det(eg(F ⇤
xg⇠(x)Fx)

�1)�
1
2

= det(egF�1
x g�1

⇠(x)F
⇤�1
x )�

1
2

= det

2

66664

⇣
r2�r1
r2

⌘2

0 0

0
⇣

(r2�r1)er
r2(er�r1)

⌘2

0

0 0
⇣

(r2�r1)er
r2(er�r1)

⌘2

3

77775

� 1
2

=

✓
r2

r2 � r1

◆3✓er � r1
er

◆2

.

Combining these results together using e✏ = J⇠ eg F�1
x g�1

⇠(x)✏⇠(x)F
⇤�1
x gives

e✏ =

0

B@

r2
r2�r1

�er�r1
er

�2
0 0

0 r2
r2�r1

0
0 0 r2

r2�r1

1

CA ✏0.

And equivalently

eµ =

0

B@

r2
r2�r1

�er�r1
er

�2
0 0

0 r2
r2�r1

0
0 0 r2

r2�r1

1

CAµ0.
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Therefore the electromagnetic properties of the spherical cloak existing in the
annulus r1 < r < r2 must be

e✏er = eµer =
r2

r2 � r1

✓
er � r1

er

◆2

(101)

e✏e✓ = eµe✓ =
r2

r2 � r1
(102)

e✏e� = eµe� =
r2

r2 � r1
. (103)

These are in agreement with the properties found in the founding papers of trans-
formation optics [1, 6], but we have arrived at the results in an arguably much more
direct way using our di↵erential geometry formulation when compared with under-
taking coordinate transformations in terms of Cartesian tensors as is done in the
literature [6, 7]. This method can easily be applied to any curvilinear coordinate
system and any di↵eomorphism in an identical manner.

A computer simulation using a ray tracing program to calculate ray trajectories
through a cloak with these properties is shown below in figure 4 (reproduced from
Controlling Electromagnetic Fields, J.B. Pendry et al. [1]). The cloak behaves as
expected.

Figure 4: The cloak exists between R1 and R2 and refracts any incident light around the
central sphere of radius R1. This means any objects placed within R1 cannot be observed
by an external observer at a radius greater than R2 [1].

19



5 Spacetime Di↵erential Geometry Formulation and
Transformation of Maxwell’s Equations

In section 4 we demonstrated the e↵ectiveness with which di↵erential geometry can
be applied to electromagnetism, and in particular transformation optics. This already
generalises to curved spaces in 3-dimensions, but we now consider how to generalise
to a fully covariant 4-dimensional spacetime representation of Maxwell’s Equations
using di↵erential geometry. We begin by considering free Minkowski spacetime.

5.1 Formulation in Minkowski Spacetime

In special relativity, electromagnetism is a single unified phenomenon with the dis-
tinction between the electric and magnetic fields only arising in a particular inertial
frame of reference. So in Minkowski spacetime, we begin by combining E and B into
a single object known as the Faraday 2-form [9, 21]

F = E ^ dt+B. (104)

Consider taking the exterior derivative of this object in 4D Cartesian coordinates.
Setting dF = 0 and equating the coe�cients of the 3-form components gives 4 equa-
tions

⇣@Ez

@y
� @Ey

@z

⌘
+
@Bx

@t
= 0,

⇣@Ex

@z
� @Ez

@x

⌘
+
@By

@t
= 0,

⇣@Ey

@x
� @Ex

@y

⌘
+
@Bz

@t
= 0,

@Bx

@x
+
@By

@y
+
@Bz

@z
= 0.

(105)

These clearly correspond to the components of the two homogeneous Maxwell
Equations.

To write the inhomogeneous Maxwell Equations in a covariant and coordinate
independent form, we similarly combine the H and D fields into a single object known
as the Maxwell 2-form [9, 21]

G = H ^ dt�D. (106)

We may also combine the charge density ⇢ and the current density J into a single
relativistically covariant spacetime object known as the source 3-form

j = J ^ dt� ⇢. (107)

By analogy with (105), we find that we can recover the inhomogeneous Maxwell
Equations simply by setting dG = j.

Note that charge conservation simply requires that j is closed, meaning dj = 0,
which follows trivially from dG = j using d2 = 0 (appendix B, equation (149)).
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So in a spacetime di↵erential geometry formulation, Maxwell’s Equations can be
written

dF = 0 (108)

dG = j (109)

where
F = E ^ dt+B, G = H ^ dt�D and j = J ^ dt� ⇢.

These are clearly equivalent to the Minkowski form of Maxwell’s Equations

r[µF⌫�] = 0

rµF
µ⌫ = µo j⌫ .

But now the expressions are coordinate independent, and the antisymmetrisation
of both the electromagnetic field tensor F µ⌫ and the Bianchi identity is inherent to the
exterior algebra, again demonstrating the naturalness with which di↵erential forms
can be applied to electromagnetism.

Finally, to complete the formulation, we just need a constitutive equation to
relate the Faraday and Maxwell 2-forms. In the Euclidian formulation the applied
and induced fields were related by the Hodge star operator, so let us consider the
operation of the Hodge star on F . We note here that as we are now in Minkowski
spacetime, taking the metric convention as (�,+,+,+) we must introduce additional
negative signs in some Hodge duals, as discussed in appendix B.

We find
?(dxi ^ dt) = �dxj ^ dxk, (110)

?(dxj ^ dxk) = dxi ^ dt. (111)

So we have (leaving the wedge products implicit),

?F = ?(Exdxdt+ Eydydt+ Ezdzdt+Bxdydz +BydzdxBzdxdy)

= Bxdxdt+Bydydt+Bzdzdt� Exdydz � Eydzdx� Ezdxdy.

And therefore in free space, using natural geometrised units such that ✏o = µo =
c = 1 and therefore B = H,D = E, we have simply [21]

G = ?F. (112)

But in general, the linear constitutive relation can be written

G = ?[f(F )] (113)

where the linear operator f encompasses both the permittivity and permeability as
a single object which fully defines the electromagnetic response of the material.
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5.2 Pullback of the Spacetime Formulation

These equations can now be pulled back along a di↵eomorphism onto any related
geometry in an identical manner to before. Applying the pullback and using the
commutativity of the pullback with the exterior derivative as before, we obtain

d eF = 0 (114)

d eG = ej (115)

where

eF = ⇠⇤F,

eG = ⇠⇤G,

ej = ⇠⇤j.

These equations appear completely equivalent to those derived in section 4.3 in the
Euclidian spatial formulation. However, the important di↵erence is that now these
equations have been formulated on a 4-dimension spacetime manifold, the pullback
may be along a 4-dimension di↵eomorphism. Therefore these equations allow for the
possibility of general spacetime transformations of Maxwell’s Equations, including
temporal distortions in addition to spatial distortions.

5.3 Pullback of the Linear Constitutive Relation

To actually obtain the correspondence between the spacetime transformations and the
equivalent electromagnetic properties, we now need to pullback the linear constitutive
equation

G = ?[f(F )]. (116)

This is almost completely equivalent to the pullback of the spatial constitutive
equations as derived in section 4.3, the only di↵erence being that f is now a linear
operator acting on a 2-form rather than a 1-form as for ✏ and µ. This simply results
in the need to take the second exterior product of the transformation operators.
Therefore we have

ef = J⇠
^2

(eg F�1
x g�1

⇠(x))f⇠(x)
^2

(F ⇤�1
x ). (117)

5.4 Variational Principle Derivation of Free Space Maxwell
Equations

Now that we have formulated a relativistic theory of the electromagnetic field using
di↵erential forms, we will use a variational principle to re-derive Maxwell’s Equations
in free space. It is hoped that this will give some insight into how to generalise the
constitutive equation to non-linear electromagnetic responses.

The Lagrangian for classical electrodynamics, using units where ✏o = µo = c = 1,
is given by [15]

L = �1

4
Fµ⌫F

µ⌫ � AµJ
µ. (118)
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The first term represents the energy stored in the electromagnetic field and follows
simply from the requirement that it is the lowest order term that obeys both gauge
invariance and Lorentz invariance. The gauge invariance requires that the term only
contains the electromagnetic field tensor Fµ⌫ , and Lorentz invariance requires that all
of the indices are contracted, while the negative sign is required so the kinetic terms
give a positive contribution to the Lagrangian. This is just the lowest order possibility
required in vacuum, but we shall be investigating the possibilities for higher order
terms in section 5.5. The second term follows simply from including a linear coupling
of the field with the source in order to obtain the correct form of Maxwell’s Equations,
since the source is not a fundamental field.

By analogy, consider the di↵erential form Lagrangian [21]

L = �1

2
F ^ ?F + A ^ j, (119)

or equivalently

L =
1

2
(F, F )� + A ^ j. (120)

We see that this similarly satisfies all of the requirements discussed above.
Now since dF = 0, using Poincaré’s lemma (appendix B), there must exist some

1-form A such that F = dA. Therefore we have the 4-form Lagrangian

L(A) = �1

2
dA ^ ?dA+ A ^ j. (121)

The associated action function is given by the 4-dimensional integral over the
spacetime manifold X.

S[A] =

Z

X

L(A) (122)

Taking a variation ↵ of A, where ↵ vanishes on the boundary @X, we have

�S = dS[A] · ↵ =
d

d✏

����
✏=0

⇣
S[A+ ✏↵]� S[A]

⌘
(123)

=

Z

X

↵ ^
⇥
� d ? dA+ j

⇤
. (124)

And from Hamilton’s principle we require �S = 0 8↵,

=) d ? dA = j

dG = j as expected.

Therefore we have recovered Maxwell’s Equations in free space from a variational
principle.

5.5 Variational Principle Derivation of Maxwell’s Equations
in a General Electromagnetic Medium

As explained in section 5.4, in free space the electromagnetic Lagrangian can be
written

L = �1

2
F ^ ?F + A ^ j =

1

2
(F, F )� + A ^ j. (125)
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The inner product of F with itself represents the electromagnetic field energy,
while the interaction term A^ j represents the linear coupling between the field and
its source. Since (F, F ) is clearly quadratic in the electromagnetic fields, the resulting
equations of motion are linear, and so this Lagrangian clearly only applies for linear
media (although as we shall see, there is even a more general possibility in linear
media).

To generalise to an arbitrary non-linear medium, consider replacing the quadratic
inner-product (F, F ) with a general energy functional of the Faraday 2-form, or equiv-
alently of the di↵erential of the electromagnetic potential 1-form A.

L = U(dA)� + A ^ j (126)

Here U(F ) is a general non-linear functional representing the energy stored in the
material at each point.

As before, S[A] =
R
X
L(A) and take a variation ↵ of A which vanishes on the

boundary @X.

�S = dS[A] · ↵ =
d

d✏

����
✏=0

⇣
S[A+ ✏↵]� S[A]

⌘

=
d

d✏

����
✏=0

Z

X

U [dA+ ✏d↵]� + ✏↵ ^ j

=

Z

X

�
d

d✏

����
✏=0

U [dA+ ✏d↵] +

Z

X

↵ ^ j

For variations which keep the position on the manifold fixed, or equivalently
variations along the associated vertical fibre bundle, this is just the definition of the
fibre derivative.

hFU(dA), d↵i = d

d✏

����
✏=0

U [dA+ ✏d↵] (127)

Therefore we have

�S =

Z

X

� hFU(dA), d↵i+ ↵ ^ j

=

Z

X

�
�
FU(dA)[, d↵

�
⌦1M

+ ↵ ^ j,

where FU(dA)[ ⌘ gFU(dA) 2 T ⇤M . By definition of the Hodge star,

=

Z

X

�d↵ ^ ?FU(dA)[ + ↵ ^ j.

Using the generalised product rule (148) and the generalised Stokes’ theorem (151),
this can be written

=

Z

X

⇣
� ↵ ^ d ? FU(dA)[ + ↵ ^ j

⌘
�
h
↵ ^ ?FU(dA)[

i

@X
.
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Since ↵ vanishes on the boundary @X, we have e↵ectively integrated by parts to give

=

Z

X

↵ ^
h
� d

⇥
? FU(dA)[

⇤
+ j

i
.

From Hamilton’s principle, we require �S = 0 8↵,

=) d
⇥
? FU(dA)[

⇤
= j,

and from Maxwell’s Equations we require dG = j,

=) G = ?[FU(F )[]. (128)

This gives the general non-linear constitutive relation in the di↵erential geometry
spacetime formulation, and confirms the form of the constitutive relation of section
4.4.

G = ?[FU(F )[] := ?[f(F )] (129)

5.6 Requirement for Lorentz Invariance of General Energy
Functional

We have now found the general non-linear constitutive relation in terms of the electro-
magnetic energy functional U(F ). However, we also require that the Lagrangian, and
therefore the functional U(F ), is Lorentz invariant. Equivalently, while the electric
and magnetic fields may change between inertial frames, the electomagnetic energy
stored in the medium must not. This is highly restrictive on the possible form of
U(F ).

To find possible forms of U(F ), we first need to find invariants of the Faraday
2-form.

We already know that F ^ ?F = (F, F )� must be Lorentz invariant, as the inner
product must be a Lorentz scalar and Lorentz transforms must preserve the 4-volume
�. Consider the interpretation of this term in terms of the physical fields E and B.

F ^ ?F = (E ^ dt� B) ^ ?(E ^ dt� B)

= E ^ dt ^ ?(E ^ dt)� B ^ ?(E ^ dt)� E ^ dt ^ ?B +B ^ ?B
= (B2 � E2)�

where E2 = EiEi, B2 = BiBi.

Also, let us consider the term F ^ F = �(F, ?F )�, which must similarly also be
Lorentz invariant. This can be written

F ^ F = (E ^ dt� B) ^ (E ^ dt� B)

= �B ^ E ^ dt� E ^ dt ^ B

= �2(E · B)�

where E · B = EiBi.

Since these are the only two independent 4-forms which can be constructed from
F , we expect these two invariants to be fundamental, in the sense that any other
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invariants of the electromagnetic field must be a function of these two. Indeed,
(B2�E2) and E ·B are fundamental invariants, and a more elementary proof of this
result is given in appendix G. This leads us to the following theorem.

Theorem: Any function U(F ) 2 R which satisfies U((
V2L)F ) = U(F ), where L

is a Lorentz transformation operator, can be written U(F ) = W (F ^ ?F, F ^ F ).

We will now use this result to find the most general possible non-linear constitutive
relation.

5.7 General Expression for the Non-Linear Constitutive
Relation Given a Lorentz Invariant Energy Functional

It was shown in section 5.6 that any Lorentz invariant functional of the Faraday
2-form F can be written

U(F ) = W 0(F ^ ?F, F ^ F ). (130)

This can equivalently be written

U(F ) = W (↵, �), (131)

where

↵ = ?(F ^ ?F ) = (F, F ), (132)

� = ?(F ^ F ) = �(F, ?F ). (133)

To apply the general non-linear constitutive relation

G = ?[FU(F )[], (134)

we first need to find the fibre derivative of the internal energy functional U(F ).

FU(F ) = FW (↵, �) (135)

=
@W

@↵
F↵ +

@W

@�
F� (136)

Now evaluating the fibre derivatives of ↵ and �,

d

d✏

����
✏=0

↵[F + ✏�F ] = 2(F, �F )

= 2
D
(
^2

g�1)F, �F
E

=
D
2F ], �F

E

⌘
D
F↵, �F

E

=) F↵ = 2F ], (137)
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d

d✏

����
✏=0

�[F + ✏�F ] = �2(?F, �F )

= �2
D
(
^2

g�1)(?F ), �F
E

=
D
� 2(?F )], �F

E

⌘
D
F�, �F

E

=) F� = �2(?F )]. (138)

So the fibre derivative of the internal energy functional is given by

FU =
@W

@↵
2F ] � @W

@�
2(?F )]. (139)

Therefore the most general form of the Maxwell 2-form in any kind of generalised
electromagnetic medium is given by

G = ?[FU [] = 2
@W

@↵
(?F ) + 2

@W

@�
F. (140)

As a quick check of this result, consider again free space for which

L = �1

2
F ^ ?F + A ^ j =

1

2
(F, F )� + A ^ j.

Therefore,

U(F ) =
1

2
(F, F ) (141)

=) W (↵, �) =
1

2
↵. (142)

And so we have,
G = ?F as expected.

6 Summary

In section 3, we have gained a deeper insight into the origin of the form invariance of
Maxwell’s Equations and confirmed the one to one equivalence between geometries
and electromagnetic media, the founding principle of transformation optics.

In section 4, we have reformulated transformation optics in its natural language
of di↵erential geometry, and through equations (80)-(81), have provided a way of
evaluating the electromagnetic properties corresponding to a given transformation
directly in any coordinate system or geometry. Equations (95)-(96) then provide the
natural generalisation of transformation optics to non-linear media, and demonstrate
that perfect invisibility is still possible in these more general media.

Finally in section 5, we have formulated a spacetime theory of transformation
optics which allows for general spacetime transformations through equation (117).
We have also found the most general constitutive relation possible for electromagnetic
media that is consistent with Lorentz invariance, through equation (140).
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7 Applications and Further Work

The central results of section 3, equations (80)-(81), allow the electromagnetic prop-
erties required to achieve any geometry of light propagation or electromagnetic field
distortion to be calculated directly in any coordinates in a relatively simple way.
This is most obviously applied to invisibility, by allowing the properties of any ge-
ometry of invisibility cloak to be calculated in an identical manner to the case of the
spherical cloak as shown in section 4.6. However, this could also be applied to many
other metamaterial applications such as absorbers and waveguides. For example, the
equations (80)-(81) could also be used to calculate the properties required to focus
incident electromagnetic fields into a point for more e�cient energy absorption, for
example in a new generation of solar panel. The concept of a metamaterial black
hole with a 99% absorption rate in microwave frequencies has already been described
by Cheng et al. [22].

The non-linear transformation equations (95)-(96) of section 3, together with
the most general Lorentz invariant constitutive relation (140) derived in section 5,
may also lead to new applications as non-linear metamaterials are developed. As
an example, the original electromagnetic cloaks described by transformation optics,
such as the spherical cloak described in section 4.6, would actually be detectable by
phase sensitive detection due to the additional phase accumulated through the cloak
in circumnavigating the cloaked object relative to free space. By using a non-linear
material as the cloaking medium, it may be possible for the non-linear components
to modify the phase of radiation passing through the cloak in order to make the cloak
undetectable even by phase sensitive detection.

The central result of the spacetime formulation of transformation optics, equation
(117), may lead to new possibilities for transformation optics since electromagnetic
properties can now be derived which will not only distort ray paths but will also be
able to slow down light rays at di↵erent positions in the material. This could be used
to create new kinds of light manipulations and illusions.

8 Conclusions

We have successfully formulated transformation optics in terms of its natural language
of di↵erential geometry, and generalised the theory to non-linear electromagnetic
media and curved relativistic spacetimes. It is clear that as the possibilities for
metamaterials continue to develop, the full potential of transformation optics will
eventually be realised.
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Appendices

Appendix A - Transformation of Surface and Volume Integrals
under a Di↵eomorphism

First consider transformation of a surface area element given by

deS = �x1 ⇥ �x2.

This is deformed into

dS = (F
⇠
· �x1)⇥ (F

⇠
· �x2)

= J⇠(x)F
�T

⇠
· deS,

where
J⇠(x) := detF

⇠
.

So we have
Z

@M

f(y) · dS =

Z

@fM
J⇠(x)F

�1
⇠

· f [⇠(x)] · deS =

Z

@fM

ef(x) · deS,

where

ef
S
(x) = J⇠(x)F

�1
⇠

· f
S
[⇠(x)].

Similarly consider the transformation of a volume element,

deV = �x1 · [�x2 ⇥ �x3].

This is deformed into
dV = J⇠(x)deV .

So we have Z

M

fV (y) · dV =

Z

fM

efV (x) · deV ,

where
efV (x) = J⇠(x) · fV [⇠(x)].
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Appendix B - Overview of Di↵erential Forms

Definition

For a given manifold M , vectors can be defined on the tangent bundle TM :=S
x TxM, 8 x 2 M (the disjoint union of the tangent space of every point on M).

Di↵erential 1-forms are then defined on the cotangent bundle T ⇤M (the dual bun-
dle to TM) to be local linear functionals from the tangent bundle to the reals,
↵x : TxM ! R. A di↵erential k-form is defined by generalisation as an alternat-
ing (entirely antisymmetric) multilinear map from the k’th outer product of tangent
vectors to the reals, !x :

Nk
1 TxM ! R, where ! 2 ⌦k(M). In terms of the more

familiar notion of tensors, this means a k-form is just an entirely antisymmetric co-
variant tensor of rank k, defined in a coordinate independent way [18].

Exterior Algebra

We find that these objects naturally satisfy an exterior (or Grassmann) algebra. The
product of this algebra is the exterior product, or wedge product, ^ : (

Vp L)
N

(
Vq L) !Vp+q L, defined for a p-form ↵ and q-forms �, � by [10]

1. ↵ ^ (� + �) = ↵ ^ � + ↵ ^ � Distributivity (143)

2. ↵ ^ (� ^ �) = (↵ ^ �) ^ � Associativity (144)

3. ↵ ^ � = (�1)p+q� ^ ↵ Anticommutativity. (145)

Notably for 1-forms we see the product is antisymmetric. This allows us to write
a general monomial (single term) k-form ! defined at a point P on a manifold to be
written in terms of the local coordinates as

! = A dx1 ^ ... ^ dxk (146)

for constant A, where the dxi are 1-forms. Clearly there are
�
n
k

�
independent k-forms

on a n-dimensional manifold, and so dim{⌦k(M)} =
�
n
k

�
.

Di↵erentiation

In exterior calculus there is a single derivative operator d which subsumes the gradi-
ent, curl and divergence operators. It is uniquely defined by [10]

1. d(↵ + �) = d↵ + d� (147)

2. d(↵ ^ �) = d↵ ^ � + (�1)p↵ ^ d� (148)

3. d(d!) = 0 (149)

4. df =
X @f

@xi
dxi for any function f . (150)

Property 3 is often written d2 = 0 and follows simply from the symmetry of mixed
partial derivatives. This generalises the well-known results ~r·(~r⇥~v) = 0, ~r⇥(~rf) =
0. The converse of this result is also true: for any k-form ! such that d! = 0, we can
always write ! = d↵ for some k � 1 form ↵. Equivalently it can be stated that any
closed form (d! = 0) is exact (! = d↵). This is known as Poincaré’s Lemma [18].
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Integration

The above notation for ! is appropriately suggestive that a k-form can be integrated
over a k-dimensional manifold. So 1-forms appear in line integrals, 2-forms in surface
integrals and so on. For example, in 2D Cartesian coordinates (x, y), the surface area
element is dxdy. The lack of dxdx, dydy terms is indicative of the antisymmetry
of an implicit exterior product between 1-forms dx and dy (and the neglected sign
represents the orientation of the integral).

This leads to the generalised Stokes’ formula
Z

@⌦

! =

Z

⌦

d! (151)

where ! is a k-form, ⌦ is a (k+1)-dimensional manifold and @⌦ is its k-dimensional
boundary. This subsumes the classical Stokes’ theorem, the divergence theorem,
Green’s theorem and the fundamental theorem of calculus into a single result [18].

Hodge Star

Since
�
n
k

�
=

�
n

n�k

�
, we are able to define a unique mapping from a k-form ↵ to an

(n� k)-form � via the relation [10]

↵ ^ ?� = (�1)
1
2 (n�t) (↵, �)�, (152)

where n is the dimension of the manifold M and t is its signature, which is defined
simply as the trace of the metric for our purposes. The volume element � is the
only independent n-form on M . In 3D Euclidian space we have simply n = t so
(�1)

1
2 (n�t) = 1, while in 4DMinkowski spacetime we have n = 4, t = 2 so (�1)

1
2 (n�t) =

�1.

Maxwell’s Equations using Di↵erential Forms

Taking the definitions of the di↵erential forms given by equations (49)-(54), applying
the definition of the exterior derivative d in Cartesian coordinates, we find equations
(55)-(58) can be written

"
@Dx

@x
+
@Dy

@y
+
@Dz

@z

#
dxdydz = ⇢ dxdydz

"
@Bx

@x
+
@By

@y
+
@Bz

@z

#
dxdydz = 0

"⇣@Ez

@y
� @Ey

@z

⌘#
dydz + cyclic perms. = �

"
@Bx

@t

#
dydz + cyclic perms.

"⇣@Hz

@y
� @Hy

@z

⌘#
dydz + cyclic perms. =

"
J +

@Dx

@t

#
dydz + cyclic perms.

These are clearly equivalent to the vector calculus expressions for Maxwell’s Equa-
tions.
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Appendix C - Derivation of Coordinate Independence of
Exterior Derivative

Let ⇠ be a di↵eomorphism from a manifold fM to an assoicated manifold M .

⇠ : fM ! M

Let x1...xm be a local coordinate chart on fM , and y1...yn be a local coordinate
chart on M .

Define the pullback ⇠⇤ as a map taking k-forms on M to k-forms on fM .

⇠⇤ : F k(fM) ! F k(M)

Therefore for a function g defined on M , g : M ! R, we have the following.

fM M

R

⇠

g·⇠=⇠⇤g
g

This is achieved using subsititution of coordinate functions,

dyi =
X @yi

@xj
dxj.

So for a 1-form ! on M ,

! =
X

ai(y)dy
i 2 F 1(V )

=) ⇠⇤! =
X

ai(y(x))
@yi

@xj
dxj 2 F 1(U).

This trivially generalises to k-forms on M .

Theorem: The pullback commutes with the exterior derivative such that for any
k-form ! on M ,

d(⇠⇤!) = ⇠⇤d!.

This can be proved inductively [10].

Proof: First take a 0-form g on M ,

dg =
X @g

@yj
dyj

=) ⇠⇤dg =
X @g(y(x))

@yj
@yj

@xi
dxi

=
X @g(y(x))

@xi
dxi

=
X @(⇠⇤g)

@xi
dxi

= d(⇠⇤g).
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Now assume true for a k � 1-form. Consider a monomial k-form:

! = gd⌘

where ⌘ is a k � 1-form.

⇠⇤! = (⇠⇤g)(⇠⇤d⌘)

= (⇠⇤g)d(⇠⇤⌘)

=) d(⇠⇤!) = d(⇠⇤g) ^ d(⇠⇤⌘) + (⇠⇤g) ^ d2(⇠⇤⌘)

= d(⇠⇤g) ^ d(⇠⇤⌘)

Also,

d! = dg ^ d⌘ + gd2⌘

= dg ^ d⌘

=) ⇠⇤(d!) = ⇠⇤dg ^ ⇠⇤d⌘
= d(⇠⇤g) ^ d(⇠⇤⌘).

Therefore d(⇠⇤!) = ⇠⇤d! for a k-form ! if true for a k � 1 form ⌘.
Since this is true for 0-forms, by induction this must be true for all monomial

k-forms. And since a general k-form is just a sum over monomial k-forms, this holds
for all k-forms.

Now consider the case where M and fM are equivalent manifolds. Interpreting
the coordinates x of fM as new coordinates on M , this result means that the exterior
derivative of a di↵erential form is independent of the coordinate system in which it
is evaluated.
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Appendix D - Pullback of Hodge Star

General method obtained from Dr Al-Attar by personal communication.

The Hodge star is defined by

↵ ^ ?� = (�1)
1
2 (n�t) (↵, �)�

where ↵, � 2 ⌦k(M) and (↵, �) is their inner product,

� 2 ⌦n(M) is the volume element.

Here assume a Euclidian spacetime for simplicity such that (�1)
1
2 (n�t) = 1. However

note that for a Lorentzian spacetime, the extra sign does not a↵ect the final result
derived here.

Apply the pullback to this definition

⇠⇤(↵ ^ ?�) = ⇠⇤[(↵, �)Vk M �]

⇠⇤↵ ^ ⇠⇤(?�) = (↵, �)Vk M ⇠⇤�.

The transformation of the volume element is defined by the Jacobian

⇠⇤� = J⇠ e�

where e� is the volume element on fM . This is evident since there is only one linearly
independent n-form on an n-dimensional manifold, so the pullback of � must be
related to e� by a constant.

Now the inner product is a scalar so its value is una↵ected by pullback.

(↵, �)VkM = ⇠⇤(↵, �)Vk M

= ⇠⇤
⌦
↵, (

^k
g�1)�

↵

where g is the metric defined on M and h·, ·i represents the duality product

=
D
⇠⇤↵, ⇠⇤

⇥
(
^k

g�1)�
⇤ E

=
D
⇠⇤↵,

^k
(⇠⇤g�1) ⇠⇤�

E

=
D
⇠⇤↵,

^k
(⇠⇤g)�1 ⇠⇤�

E

=
D
⇠⇤↵, (

^k
eg�1)(

^k
eg)
^k

(⇠⇤g�1) ⇠⇤�
E

where eg is the metric on fM

=
D
⇠⇤↵,

^k
eg�1

^k⇥
eg(⇠⇤g)�1

⇤
⇠⇤�

E

=
D
⇠⇤↵, (

^k
eg�1)(

^k
T ) ⇠⇤�

E

=
⇣
⇠⇤↵, (

^k
T ) ⇠⇤�

⌘
Vk fM
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where
T := eg(⇠⇤g)�1.

So we have written the inner product on M as an inner product on fM . Therefore
we have

⇠⇤↵ ^ ⇠⇤(?�) = J⇠

⇣
⇠⇤↵, (

^k
T ) ⇠⇤�

⌘
Vk fM

e�.

By defintion of the Hodge star, the inner product can be written

⇣
⇠⇤↵, (

^k
T )⇠⇤�

⌘
VkM

e� = ⇠⇤↵ ^ ?
⇥
(
^k

T )⇠⇤�
⇤
.

So we have

⇠⇤↵ ^ ⇠⇤(?�) = ⇠⇤↵ ^ ?
⇥
J⇠(

^k
T )⇠⇤�

⇤
.

And since this is true for all k-forms ↵,

⇠⇤(?�) = ?
⇥
J⇠(

^k
T )⇠⇤�

⇤i
.

Now we just need to determine the determinant factor J⇠. Consider the case
where � = �,

⇠⇤(?�) = ?
⇥
J⇠(

^n
T )⇠⇤�

⇤
.

Since ?� = 1 and ⇠⇤� ⌘ J⇠e�,

=) ⇠⇤(1) = ?
⇥
J⇠(

^n
T )J⇠e�

⇤

1 = J2
⇠ ?

⇥
(
^n

T )e�
⇤
.

Now,

(
^n

T )e� = Tdex1 ^ Tdex2 ... ^ Tdexn

⌘ |T |dex1 ^ dex2 ... ^ dexn

= |T |e�

where |T | is the determinant of T . So we have

1 = J2
⇠ |T | ? e�

=) J⇠ = |T |� 1
2

Therefore we have

⇠⇤(?�) = ?[J⇠(
^k

T )⇠⇤�],

where we have defined

T = eg(⇠⇤g)�1,

J⇠ = |T |� 1
2 .
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Appendix E - Pullback of Metric and Linear Operators

Consider manifolds M and fM with associated metrics g and eg respectively. Define
di↵eomorphism

⇠ : fM ! M

=) T ⇠ : TfM ! TM.

And define deformation gradient

F (x) := T ⇠|x : Tx
fM ! T⇠(x)M.

For v 2 Tx
fM and ↵ 2 T ⇤

⇠(x)M , define dual operator F ⇤ by

hFxv,↵iM = hv, F ⇤
x↵ifM

=) F ⇤
x : T ⇤

⇠(x)M ! T ⇤
x
fM.

So we now have the mappings

Fx : Tx
fM ! T⇠(x)M,

F�1
x : T⇠(x)M ! Tx

fM,

F ⇤
x : T ⇤

⇠(x)M ! T ⇤
x
fM,

F ⇤�1
x : T ⇤

x
fM ! T ⇤

⇠(x)M.

Pullback of Metric

Require the pullback of the metric to satisfy

(⇠⇤g)x (v, w) = g⇠(x)(T ⇠|xv, T ⇠|xw)

for v, w 2 Tx
fM,T ⇠|xv 2 T⇠(x)M , such that

⌦
(⇠⇤g)xv, w

↵
fM =

⌦
g⇠(x)Fxv, Fxw

↵
M

=
⌦
F ⇤
xg⇠(x)Fxv, w

↵

=) (⇠⇤g)x = F ⇤
xg⇠(x)Fx.

This is the pullback of the metric. This has the e↵ect

Tx
fM ! T⇠(x)M ! T ⇤

⇠(x)M ! T ⇤
x
fM

as expected.

Pullback of Linear Operators

For a di↵erential form linear operator ✏,

✏ : T ⇤M ! T ⇤M (homomorphism)

=) ⇠⇤✏ : T ⇤fM ! T ⇤fM.
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Now define the pullback of ✏ by

⌦
(⇠⇤✏)x↵, v

↵
fM =

⌦
✏⇠(x)F

x�1↵, Fxv
↵
M

=
⌦
F ⇤
x ✏⇠(x)F

x�1↵, v
↵
fM

=) (⇠⇤✏)x = F ⇤
x ✏⇠(x)F

⇤�1
x .

This is the pullback of a linear operator ✏. This has the e↵ect

T ⇤
x
fM ! T ⇤

⇠(x)M ! T ⇤
⇠(x)M ! T ⇤

x
fM

as expected.
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Appendix F - Pullback of Fibre Derivative

General method obtained from Dr Al-Attar by personal communication.

Let ⌧ : T ⇤fM ! fM and ⇡ : T ⇤M ! M be projections from vector bundles T ⇤fM
and T ⇤M onto manifolds fM and M . Let F ⇤�1 : T ⇤fM ! T ⇤M be a smooth vector
bundle isomorphism along a di↵eomorphism ⇠ : fM ! M , and F ⇤ : T ⇤M ! T ⇤fM
be the associated dual vector bundle isomorphism defined along ⇠�1 : M ! fM such
that we have the following commutative diagrams.

T ⇤fM T ⇤M

fM M

F ⇤�1

⌧ ⇡

⇠

T ⇤M T ⇤fM

M fM

F ⇤

⇡ ⌧

⇠�1

Consider function U 2 C1(T ⇤M). Pullback of this function is defined by

⇠⇤U := U � F ⇤�1 2 C1(T ⇤fM).

By definition of the fibre derivative
D
F
⇥
(⇠⇤U)( eE)

⇤
, eE 0

E
=

d

ds

⇥
(⇠⇤U)( eE + s eE 0)

⇤���
s=0

for eE, eE 0 2 T ⇤
x
fM where x 2 fM (so eE, eE 0 exist in the same fibre on M).

Now, ⇠⇤U( eE + s eE 0) = U � F ⇤�1( eE + s eE 0)

= U(F ⇤�1 eE + sF ⇤�1 eE 0).

Therefore,
D
F
⇥
(⇠⇤U)( eE)

⇤
, eE 0

E
=

d

ds
U(F ⇤�1 eE + sF ⇤�1 eE 0)

���
s=0

=
D
FU(F ⇤�1 eE), F ⇤�1 eE 0

E

=
D
F�1FU(F ⇤�1 eE), eE 0

E

=) F
⇥
(⇠⇤U)( eE)

⇤
= F�1FU(F ⇤�1 eE)

= F�1FU(E⇠(x)).

And since the pullback of the fibre derivative FU(E⇠(x)) 2 T⇠(x)M is defined by

⇠⇤FU(E⇠(x)) := F�1
x FU(E⇠(x)),

we therefore have
⇠⇤FU(E⇠(x)) = F

⇥
(⇠⇤U)( eEx)

⇤
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Appendix G - Fundamental Invariants of Electromagnetic Field

Proof taken from The Classical Theory of Fields, Volume 2, Landau and Lifshitz. [23]

Consider the 3-vector
F = E + iB.

Now consider the behaviour of this vector under Lorentz transformations. The
electromagnetic fields can be shown to transform under a Lorentz boost as

E 0
k = Ek E 0

? = �[E + v ⇥ B]?,

B0
k = Bk B0

? = �
h
B � 1

c2
(v ⇥ E)

i

?
.

Using the rapidity parameter  , defined by tanh = �, the Lorentz transformation
of F due to a boost along the x-axis can therefore be written (in natural units)

F 0 =

0

@
1 0 0
0 cosh �isinh 
0 isinh cosh 

1

AF .

So we see that Lorentz transformations of the 3-vector F can be represented by
rotations through complex angles. Real angles correspond to Euclidian rotations,
while imaginary angles correspond to boosts via the rapidity parameter  .

Now, the only invariant of a vector with respect to rotations is its length, given
by its square.

F 2 = (E2 � B2) + 2i(E · B)

Since the 3-vector F is clearly uniquely defined for given E and B fields, the only
invariants of the 3 vector F will also be the only invariants of the electromagnetic
field. Therefore the only invariants of the electromagnetic field are E2�B2 and E ·B.
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